Statistical Learning and Learning to Read

Davide Crepaldi, Valentina Pescuma, Maria Ktori, Benedetta Cevoli, Francesca Franzon, Eleonora Lomi [davide.crepaldi@sissa.it] [http://lrlac.sissa.it]

International School for Advanced Studies (SISSA), Trieste

AIP, Bari, 21 September 2017

Reading is a human wonder

Reading is outside of our genetic endowment:

- Not observed universally
- Not learned spontaneously

Nearly all readers are astonishingly efficient:

- ► 8-letter words in ~35ms (e.g., Forster & Davis, 1984)
- ~20 letters every ~250ms (e.g., Rayner, 1998)

Arbitrariness

- elephant
- table
- heat
- drum
- •

Arbitrariness. Really?

- elephant
- table
- heat
- drum
- ▶ ...

- preheat
- juicer
- bioweapon
- guesstimate
- untweet (?)

Statistical learning

Children learning to read

- Natural reading
 - Stories (=connected text)
 - Just read and understand (=no strange task to carry out)

Eye tracking

- Many children, create a database to share
- Across a natural spectrum of age
- Across a natural spectrum of reading proficiency
- Check sensitivity to statistical regularities

For today

- Data from 22 kids (out of the 80 tested so far)
- nGrams of different size
- Average nGram frequency across whole words

ALBERO

- 2grams: AL, LB, BE, ER, RO
- 3grams: ALB, LBE, BER, ERO
- 4grams: ALBE, LBER, BERO

 1745 tokens, from 728 different words, across 12 short stories

nGrams distribution

Mean nGram Frequency

nGrams correlation

Average nGram Frequency

Participant sample

Raven Score

Frequency and length

Frequency and length

response

zipf

Early on?

1600 -1600 -. 1200 -1200 medianGazeDur medianGazeDur 800 -800 þ 400 -400 -10 11 12 13 14 15 2 2 3 6 9 à. wordFrequency wordLength

Really early on?

Age effects

Overall reading speed

5.0 4.5 4.0 MtSyllPerSec 3.5 3.0 2.5 20 з 6 7 8 2 5 4

response

zipf

Specific to reading?

response

zipf

nGrams, finally

Size matters?

Size matters. But with caution.

Do we see age effects, already?

n4_mean

To wrap up

- 2grams more characteristics of words, thus good to distinguish words from non-existing strings; but also more variable across words, thus ineffective to identify specific words.
- Frequency effects (which is statistical learning!) in very young kids, in early measures of processing, and moderated by reading speeding, but (probably) not in a theoretically relevant way.
- nGram frequency seems to affect eye movements in children, even early on.
- Children seem to track better the stats of larger chunks (jumping to lexicality?).
- The logic behind the experiment seems to work
- The logistics behind the experiment seem to work

Down the line

- Check morphology
- A `sliding window' analysis
- Word predictability in context (corpora, cloze task with kids)
- Explore other types of statistical regularities (e.g., transitional probabilities, long-distance relationships)
- Consider spaces, which may be critical for its perceptual salience
- Takes care of predictor correlation more seriously

A new approach to reading

- Scripts can be seen as fully–fledged visual systems
- They can be studied as such (without language)
- The way we learn to deal with them can be captured through statistical learning
- The way we learn to map them onto language can be captured through statistical learning

A new approach to reading

- Scripts can be seen as fully–fledged visual systems
- They can be studied as such (without) language
- The way we learn to deal with them can be captured through statistical learning
- The way we learn to map them onto language can be captured through statistical learning

Acknowledgments

 Valentina Parma (SISSA) and Simona Cerrato (SISSA Medialab).

Statistical Learning and Learning to Read

Davide Crepaldi, Valentina Pescuma, Maria Ktori, Benedetta Cevoli, Francesca Franzon, Eleonora Lomi [davide.crepaldi@sissa.it] [http://lrlac.sissa.it]

International School for Advanced Studies (SISSA), Trieste

AIP, Bari, 21 September 2017

