Cross-word priming during sentence reading

Davide Crepaldi

International School for Advanced Studies (SISSA), Trieste

https://Irlac.sissa.it Tweets at @CrepaldiDavide

EPS, 7 January 2021

Individual word identification

Computational models

- DRC (Coltheart et al., 2001)
- CDP++ (Perry et al., 2010)
- LTRS (Adelman, 2011)
- Spatial Coding (Davis, 2010)

Sentence reading

- Several words at the same time
- In close temporal succession (e.g., we read ~ 250 words per minute, Brysbaert (2019))

Interference

- Keep the flows separate, either temporally (serial models?) or computationally
- Let activation flow freely, and implement protections against disruptive cross-word interference (OB1; Snell et al. (2018))

Cross-word priming

The guard saluted the King and the Queen in the carriage

Priming:

- Semantic
- Morphological
- Orthographic
- Repetition

Cross-word priming

The guard saluted the King and the Queen in the carriage

Priming:

- Semantic
- Morphological
- Orthographic
- Repetition

- Violations (e.g., "John eats an apples"; ERP)
- Minimal contexts (e.g., word pairs, nominal phrases)
- One word at a time (RSVP)

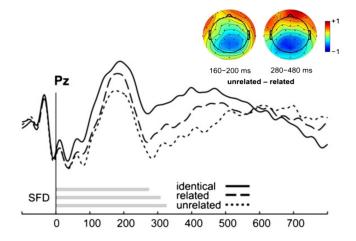
Dimigen et al. (2012)

kitchen forest tree blur drive

kitchen forest tree blur drive

kitchen sugar tree blur drive

Eye tracking and EEG co-registered


Dimigen et al. (2012)

Eye tracking

	Related	Unrelated
First fix	291 <i>ms</i> (23)	301 <i>ms</i> (23)
Single fix	309 <i>ms</i> (29)	327 <i>ms</i> (30)
Gaze dur	335 <i>ms</i> (29)	355 <i>ms</i> (34)

Dimigen et al. (2012)

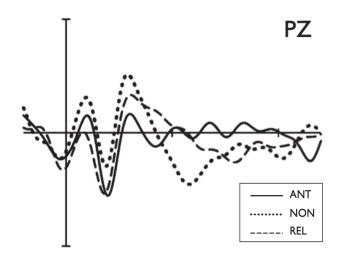
Fixation-Related Potentials (FRPs)

Kretzschmar et al. (2009)

The opposite of black is white

The opposite of black is white The opposite of black is yellow The opposite of black is nice

Eye tracking and EEG co-registered


Kretzschmar et al. (2009)

Eye tracking

	Predicted	Related	Unrelated
First fix	213 <i>ms</i> (63)	232 <i>ms</i> (69)	229 <i>ms</i> (70)
Single fix			
Gaze dur			

Kretzschmar et al. (2009)

FRPs

So, overall...

- Data not entirely consistent
- Methodological limitations

Paul entered a room with **a table** and **a chair**, which didn't really look like a kitchen

Our paradigm

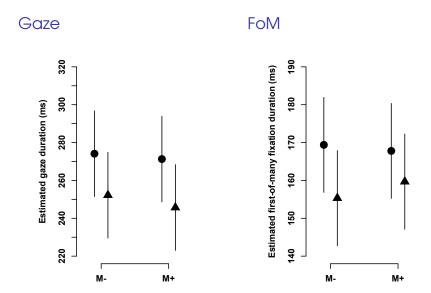
(S+M+) Paul entered a room with a table and a chair, which didn't really look like a kitchen

(S-M+) Paul entered a room with a dog and a chair, which didn't really look like a kitchen

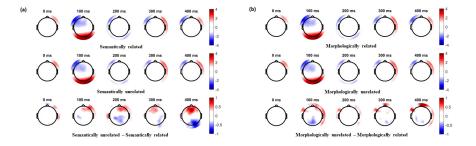
(S+M-) Paul entered a room with some tables and a chair, which didn't really look like a kitchen

(S-M-) Paul entered a room with some dogs and a chair, which didn't really look like a kitchen

Eye tracking and EEG co-registered


(S+M+) Kolesar ni bil pozoren na **avto** in **tovornjak** in je zato povzročil nesrečo

(S-M+) Kolesar ni bil pozoren na lužo in tovornjak in je zato povzročil nesrečo


(S+M-) Kolesar ni bil pozoren na avte in tovornjak in je zato povzročil nesrečo

(S-M-) Kolesar ni bil pozoren na luže in tovornjak in je zato povzročil nesrečo


Eye tracking

FRPs

FRPs, cluster-based permutation

Interaction in the lexicon

- Cross-word semantic priming
- Compatible with OB1 (Snell et al., 2018)
- Parallel vs. serial, difficult to say

Caveat:

- Abstract morpheme (see, e.g., Paterson et al., 2011)
- No abstract morpheme representations in the lexicon
- Stronger locality than semantics

The team

Katarina Marjanovič

Yamil Vidal

Get in touch!

The slides

My Twitter account

Cross-word priming during sentence reading

Davide Crepaldi

International School for Advanced Studies (SISSA), Trieste

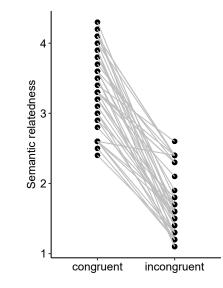
https://Irlac.sissa.it Tweets at @CrepaldiDavide

EPS, 7 January 2021

References I

- Adelman, J. S. (2011). Letters in time and retinotopic space. *Psychol. Rev.*, 118(4):570–582.
- Brysbaert, M. (2019). How many words do we read per minute? a review and meta-analysis of reading rate. *Journal of Memory and Language*, 109:104047.
- Coltheart, M., Rastle, K., Perry, C., Langdon, R., and Ziegler, J. (2001). Drc: A dual route cascaded model of visual word recognition and reading aloud. *Psychological Review*, 108(1):204–256.
- Davis, C. J. (2010). The spatial coding model of visual word identification. *Psychol. Rev.*, 117(3):713–758.
- Dimigen, O., Kliegl, R., and Sommer, W. (2012). Trans-saccadic parafoveal preview benefits in fluent reading: A study with fixation-related brain potentials. *Neuroimage*, 62(1):381–393.
- Kretzschmar, F., Bornkessel-Schlesewsky, I., and Schlesewsky, M. (2009). Parafoveal versus foveal n400s dissociate spreading activation from contextual fit. *Neuroreport*, 20 18:1613–8.
- Paterson, K. B., Alcock, A., and Liversedge, S. P. (2011). Morphological priming during reading: Evidence from eye movements. *Lang. Cogn. Process.*, 26(4-6):600–623.

- Perry, C., Ziegler, J. C., and Zorzi, M. (2010). Beyond single syllables: Large-scale modeling of reading aloud with the connectionist dual process (CDP) model. *Cogn. Psychol.*, 61(2):106–151.
- Snell, J., van Leipsig, S., Grainger, J., and Meeter, M. (2018). Ob1-reader: A model of word recognition and eye movements in text reading. *Psychological Review*, 125:969–984.


Stimuli and design

Primes and targets

- always in the same clause
- never shared the same orthographic suffix
- never in initial or final position
- never followed by a comma
- never at the beginning or at the end of a line
- (Partial) Latin Square design: each participant saw two of the four corresponding sentences
- Two blocks, corresponding sentences never in the same block
- Each block included 40 experimental trials and 60 fillers

	S+M+ prime	S+M- prime	S-M+ prime	S-M- prime	Target
Frequency	1.46 (0.54) 6.60 (2.10)	1.35 (0.53) 6.57 (2.09)	1.34 (0.58) 6.97 (2.11)	1.36 (0.52) 7.25 (2.32)	1.32 (0.50) 6.57 (2.04)
Length	0.00 (2.10)	0.57 (2.09)	0.97 (2.11)	7.ZƏ (Z.3Z)	0.37 (2.04)

Semantic relatedness

Cloze Probability Task

	S+M+	S+M-	S-M+	S-M-
Cloze probability	.05 (.05)	.06 (.07)	.01 (.03)	.01 (.03)

	S+M+	S+M-	S-M+	S-M-
Prime	231 (146)	230 (146)	241 (154)	251 (153)
FoM	160 (97)	155 (86)	168 (101)	169 (107)
GD	248 (136)	255 (149)	273 (159)	275 (168)
TLT	395 (233)	421 (249)	503 (344)	516 (371)