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The reading paradox

We’re fantastic readers. . .
I We can identify words in ~35ms and without

awareness (e.g., Forster and Davis, 1984)

I We read ~260 words per minute (e.g., Brysbaert, 2019)

. . . and yet, no direct genetic endowment
I Written language is a recent invention (~5.5K ya)
I Written language isn’t observed universally
I Literacy isn’t acquired spontaneously



The reading paradox

(Dehaene and Cohen, 2007)



Statistical learning in visual scenes

(Fiser and Aslin, 2001)



Statistical learning in the lexicon

I Words as ordered chunks of letters
I Morphemes as recurring chunks of letter

I There’s corn in corner and iron in irony (e.g., Longtin et al.,

2003; Rastle et al., 2004)

I gasful is trouble, but fulgas is not (e.g., Crepaldi et al., 2010)



The statistical learning of affixes



Artificial affixes

Training

Testing



Results

(Lelonkiewicz et al., 2020)



Visual affixes

Our chunks:
I clusters of pseudo-letters that occur together

frequently across different items
I no contact with phonology, semantics or syntax

And yet:
I sensitivity to these chunks
I sensitivity to their position (e.g., Crepaldi et al., 2010)



Stairway to language



One step down: abstract shapes



One step up: real letters



Two steps up: meaning
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Take home message

I Readers spontaneously extract visual statistical
regularities and use them to identify affix-like
character chunks

I Such learning occurs in purely visual and
language-like material, showing that the core
computational engine is not language-specific

I Such learning is, however, enhanced by the
availability of linguistic information (phonology and
meaning)



More about this?

I Lelonkiewicz, J., Ktori, M. and Crepaldi, D. (2020).
Morphemes as letter chunks: Discovering affixes
through visual regularities. Journal of Memory and
Language, 115, 104152

I Lelonkiewicz, J., Ktori, M. and Crepaldi, D. (2021).
Morphemes as letter chunks: Linguistic information
enhances the learning of visual regularities. In revision
at Journal of Memory and Language



Does this go beyond morphology?



Bigrams



Phantom words (Endress and Mehler, 2009)

ABF
DBC
AEC



Phantom words (Endress and Mehler, 2009)

ABF
DBC
AEC

ABC



Phantom words (Endress and Mehler, 2009)

ABF
DBC
AEC

DEF



Phantom words (Endress and Mehler, 2009)

ABF
DBC
AEC

DEF
ABC



Pseudo–letters (Vidal et al., 2017)



Results



Phantom tripods



Phantom tripods



Phantom Gabors



Phantom Gabors



Take–home message

I We code for nGrams/letter transition stats while
learning novel words

I We use the same mechanism while learning novel
objects, where the lower–level units are:
I not arranged horizontally, and very different visually

from letters
I not even spatially segregated

I Word learning shares (part of) its computational core
with vision



More about this?

I Vidal, Y., Viviani, E., Zoccolan, D. and Crepaldi, D.
(2021). A general-purpose mechanism of visual
feature association in visual word identification and
beyond. Current Biology, 31, 1261-1267.



Do we see orthographic in non-linguistic
animals?



Orthographic coding in Baboons

(Grainger et al., 2012)



The neural counterpart

(Rajalingham et al., 2020)



Proof-of-principle

I Grainger et al. (2012): behaving animals, whole-sale
approach

I Rajalingham et al. (2020): more details, but artificial
models

Long-Evans rats
I A jump back in evolution
I Low acuity
I Object invariance is not entirely clear (e.g., Tafazoli et al.,

2017; Vinken and Op De Beeck, 2021)



The setup



Letter identification

Go-left letters

Go-right letters



Letters as abstract objects



Letters as abstract objects

transformed letters
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A rodent model of visual word identification

I Learn to identify letters with at least some degree of
invariance



Letters in bigrams



Letters in bigrams

novel bigrams with familiar letters
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Letters in bigrams
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A rodent model of visual word identification

I Learn to identify letters with at least some degree of
invariance

I Identify individual letters as independent objects
within bigrams



Two familiar letters



Letter integration into bigrams

difference between TT and T
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Letter integration into bigrams
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A rodent model of visual word identification

I Learn to identify letters with at least some degree of
invariance

I Identify individual letters as independent objects
within bigrams

I Use information from multiple letters within bigrams



Transposed letter effects



Letters are identified, still

difference between TT and TTrev
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But position is coded, too
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A rodent model of visual word identification

I Learn to identify letters with at least some degree of
invariance

I Identify individual letters as independent objects
within bigrams

I Use information from multiple letters within bigrams
I Identify letters in a position-invariant way
I Code for letter position within bigrams

I Rats spontaneously process bigrams orthographically,
given familiarity with letters
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String initial chunks are easier to detect



String initial chunks are easier to detect



Orthographic coding

“I will assume that most of the information
used by skilled readers to silently read words for
meaning concerns information about abstract
(i.e., case and font independent) letter identities,
plus information about letter positions – in other
words, orthographic information”

(Grainger, 2018)



Blind to suffixes?

I (GASFUL vs. GASFIL) vs. (FULGAS vs. FILGAS)

(Crepaldi et al., 2010)



Corners that corn

dealer–DEAL vs. corner–CORN vs. dialog–DIAL

(Rastle et al., 2004)



Orthographic coding in Baboons

(Grainger et al., 2012)



A new approach to reading

I Scripts can be seen as fully–fledged visual systems
I They can be studied as such, without language
I The way we learn to deal with them can be captured

through statistical learning
I The way we learn to map them onto language can

be captured through statistical learning



The Statistical Learning principle

I Find regularities in low–level objects. . .
I . . . and build higher–level units based on this

regularities

A
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Y
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HAPPY
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