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Reading is a human wonder

I We can read 8–letter words in ~35ms (e.g., Forster and

Davis, 1984)

I We gather information about ~20 letters every ~200ms
(e.g., Rayner, 1998)

I We read ~250 words per minute (e.g., Brysbaert, 2019)



No genetic endowment

I Written language isn’t observed universally
I Literacy isn’t acquired spontaneously
I Writing appeared ~5.5K years ago (e.g., Woods, 2010)



Neural Recycling

(e.g., Dehaene et al., 2005; Dehaene and Cohen, 2007)



The ventral occipito–temporal cortex (VOTC)

(e.g., Cohen et al., 2000; Hasson et al., 2003; Gaillard et al., 2006)



The Statistical Learning hypothesis

I Progressively compact the input taking advantage of
its regularities (redundancy)



The Statistical Learning hypothesis

I Progressively compact the input taking advantage of
its regularities (redundancy)

A
P

P
Y

H

HAPPY



Phantom words paradigm (Endress and Mehler, 2009)
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Pseudo–letters (Vidal et al., 2017)



Results

(Vidal et al., 2021)



The Statistical Learning hypothesis
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Vision, not language



Phantom tripods



Phantom tripods

(Vidal et al., 2021)



Phantom Gabors



Phantom Gabors

(Vidal et al., 2021)



Take–home message

I We code for nGrams/letter transition stats while
learning novel words

I We use the same mechanism while learning novel
objects, where the lower–level units are:
I not arranged horizontally, and very different visually

from letters
I not even spatially segregated

I More generally, reading shares (part of) its
computational core with vision

I This computational core is captured by the statistical
learning hypothesis
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Linguistic morphology

fall-s, deal-er, basket-ball, corner, carpet

I Corner primes corn similarly to how dealer primes
deal (e.g., Longtin et al., 2003; Rastle et al., 2004)

Morphemes as visual objects, clusters of recurring letter
chunks



Morphemes as visual objects

I Pseudocharacters, so no previous knowledge, no
meaning, no phonology

I 10 different “affixes” appear in 20 different “words”



Sensitivity to affixes (and their position)

(Lelonkiewicz et al., 2020)



“Prefixes”



Sensitivity to affixes (and their position)

(Lelonkiewicz et al., 2020)



Mimicking morphology

I Gasful more difficult to reject than gasfil; the effect
shrinks with fulgas vs. filgas (e.g., Crepaldi et al., 2010)

I We obtain morphology without familiar letters,
without meaning and without phonology

I Learning to read
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Unlikely readers

Long-Evans rats



The setup



Letter identification

Go-left letters

Go-right letters



Letter identification

standard letters
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Letter identification
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Letters as abstract objects



Letters as abstract objects

transformed letters
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Letters as abstract objects
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Reading rats, fact 1

I Rats can be trained to identify letters as abstract
objects

I Object invariance



Letters in strings



Letters in strings

novel bigrams with familiar letters
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Letters in strings
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Reading rats, fact 2

I Rats naturally identify letters withing strings
I Clutter tolerance



Two familiar letters



Performance on bigrams
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Two letters is better than one

difference between TT and T
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Reading rats, fact 3

I Rats spontaneously use information from multiple
letters

I Cue integration

I Integration or summation?



Transposed-letter effects



Transposed-letter effects
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Position coding

difference between TT and TTrev
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Reading rats, fact 4

I Rats identify letters in a position-invariant way
I Rats code for position within strings

“I will assume that most of the information used by
skilled readers to silently read words for meaning
concerns information about abstract (i.e., case
and font independent) letter identities, plus infor-
mation about letter positions – in other words, or-
thographic information.”

(Grainger, 2018)



Letters and words

I Natural processing of strings, given familiarity with
letters

I But we human readers hold representations for both
letters and words at the same time

I Training on bigrams and letters



Sum up

I Rats can be trained to identify letters as abstract
objects

I After they’re familiar with letters, they spontaneously:
I identify letters within strings
I use information from multiple letters
I combine position-invariance with position coding

(hallmark of orthographic coding)
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A “visual” look into language

I Written language is too recent to have
biologically-selected brain machinery; evolutionary
older mechanisms must be recycled (Dehaene and Cohen,

2007)

I We showed that:
I a general-purpose learning mechanism emerges

across different types of visual stimuli, if one looks into
the early stages of familiarization (Vidal et al., 2021)

I this mechanism builds on the statistics of lower-level,
fundamental units (perhaps to generate higher-level
representations?)

I these phenomena can explain linguistic effects (e.g.,
early morphology; Lelonkiewicz et al., 2020)

I they’re not dependent on language, to the point that
they can be modeled in rodents



A “visual” look into language

I More broadly (and in the longer run):
I the computational content of the Neuronal Recycling

Hypothesis
I a theory of learning to read that builds on these

insights
I a computational model of visual (word) identification
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