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Abstract 

During visual word processing readers identify chunks of co-occurring letters and code for 

their typical position within words. Using an artificial script, we examined whether these 

phenomena can be explained by the ability to extract visual regularities from the environment. 

Participants were first familiarized with a lexicon of pseudoletter strings, each comprising an affix-

like chunk that either followed (Experiment 1) or preceded (Experiment 2) a random character 

sequence. In the absence of any linguistic information, chunks could be defined only by their 

statistical properties - similarly to affixes in the real language, chunks occurred frequently and 

assumed a specific position within strings. In a later testing phase, we found that participants were 

more likely to attribute a previously unseen string to the familiarization lexicon if it contained an 

affix, and if the affix appeared in its typical position. Importantly, these findings suggest that 

readers may chunk words using a general, language-agnostic cognitive mechanism that captures 

statistical regularities in the learning materials. 

Keywords: visual word identification, morphology, artificial script, chunking, statistical 

learning  
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Morphemes as letter chunks: Discovering affixes through visual regularities 

The cognitive system is tuned to detect the probabilistic patterns present in the environment. 

During even a brief exposure, people learn about the various statistical properties of perceptual 

events, including distributional variability, frequency, and probability with which events co-occur. 

Importantly, such learning has been demonstrated for different types of materials, contexts, and 

cognitive domains (for reviews, see Armstrong, Frost, & Christiansen, 2017; Aslin, 2017; Aslin & 

Newport, 2012; Christiansen, 2019; Frost, Armstrong, & Christiansen, 2020; Newport, 2016; 

Saffran & Kirkham, 2018; Thiessen, Kronstein, & Hufnagle, 2013). 

One domain for which the ability to extract statistical information has been particularly well 

evidenced is visual processing. Specifically, observers are known to compute co-occurrence 

probabilities for visual objects, both when these objects are presented sequentially or embedded 

within complex scenes. In a seminal study by Fiser and Aslin (2001), participants passively viewed 

scenes composed of multiple abstract shapes that were arranged in a seemingly coincidental 

manner. Unbeknownst to the participants, shapes were organized into base pairs (i.e., pairs 

consisting of shapes that were always presented together). After being familiarized with the scenes, 

participants were asked to choose between base pairs and foil pairs (i.e., pairs that shared the 

properties of base pairs, but consisted of shapes that were never presented together during 

familiarization). The results revealed that participants were able to distinguish base pairs from foils 

with above-chance accuracy, suggesting that they must have extracted shape co-occurrence 

probabilities (for similar results, see Bulf, Johnson, & Valenza, 2011; Chun & Jiang, 1999; Fiser & 

Aslin, 2002; Turk-Browne, Jungé, & Scholl, 2005). 

Further studies suggested that the extraction of statistical information may contribute to the 

formation of complex visual representations. In Fiser and Aslin (2005; Experiment 4), participants 

were familiarized with scenes built of shape pairs and quadruples, and then asked to distinguish 

between foil and base pairs, foil and base quadruples, and between foil and embedded pairs (i.e., 
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pairs of co-occurring shapes that during familiarization always appeared embedded in a quadruple). 

The study found that, whereas participants were able to successfully tell apart foil and base 

pairs/quadruples, they failed to distinguish between foil and embedded pairs, implying that the co-

occurrence probabilities computed for individual shapes were not retained after participants 

constructed the representations for pairs and quadruples. 

In sum, studies have shown that observers learn probabilistic information while processing 

visual stimuli, and that such information may subserve the construction of higher-order visual 

representations (see also Frank, Goldwater, Griffiths, & Tenenbaum, 2010; Orbán, Fiser, Aslin, & 

Lengyel, 2008; Thiessen et al., 2013). 

Curiously, it remains unclear whether the ability to extract regularities contributes to the 

processing of written language. On one hand, the link between the two faculties is plausible—at the 

orthographic level1, written language can be conceptualized as an instance of visual stimuli, and 

parallels can be drawn between reading and generic visual processing (e.g., Dehaene, Cohen, 

Sigman, & Vinckier, 2005; Grainger, Dufau, & Ziegler, 2016). Further, visual word processing 

appears to be guided by the probabilistic structure of language. Beyond the well-established word 

frequency effect (e.g., Forster & Chambers, 1973; Monsell, 1991), readers appear to extract 

different kinds of regularities from printed words. For one, readers are sensitive to the consistency 

between the written form and other linguistic levels such as phonology and meaning. Specifically, 

word naming is facilitated by high orthography-to-phonology consistency, that is, words containing 

letter patterns that are always pronounced the same (e.g., -ike in like and hike) are named faster than 

 
1 In keeping with most of the psycholinguistic literature on orthography and morphology, we intend 

the term “orthographic” in its wide sense, as referring to any kind of representation or level of 

linguistic analysis that deals with orthographic information, no matter whether lexical (words) or 

sub–lexical (morphemes and letter clusters). 
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words containing patterns that take different pronunciations in different words (e.g., -ave in have 

and gave; e.g., Jared, 2002; Jared, McRae, & Seidenberg, 1990; Perry, Ziegler, & Zorzi, 2007). 

Similarly, words whose spelling provides a consistent cue to a certain meaning (e.g., widow in 

widower, widowed, widowhood) are processed faster compared to words with low orthography-to-

semantics consistency (e.g., whisk in whisker, whisky, whiskered; Marelli, Amenta, & Crepaldi, 

2015). Furthermore, readers seem to have knowledge of the spelling-to-meaning regularities typical 

for their native language (Ulicheva, Harvey, Aronoff, & Rastle, 2020). 

However, the role of orthographic regularities becomes less clear when considering the 

visual aspect of word processing. Indeed, regularities are also present at a purely orthographic level 

where they can be derived from the distribution of letters and letter clusters in words. But while 

there is a general consensus that readers extract information about the patterns with which letters 

co-occur in words, the current empirical data provide a mixture of results as to the influence of this 

information on visual word processing (for a review, see Chetail, 2015). A good example of such 

contradictory results relates to the effect of bigram frequency. One of the earliest studies 

investigating this effect, rather counter-intuitively, demonstrated that words made up of bigrams 

with low frequency (e.g., vodka) were perceived faster than words with high frequency bigrams 

(e.g., latin; Owsowitz, 1963). This finding, however, received little support from subsequent studies 

(e.g., Chetail, Balota, Treiman, & Content, 2014), which yielded a combination of facilitatory 

(Biederman, 1966; Massaro, Jastrzembski, & Lucas, 1981) and null effects (Andrews, 1992; 

Gernsbacher, 1984; Johnston, 1978; Keuleers, Lacey, Rastle, & Brysbaert, 2012; Manelis, 1974; 

McClelland & Johnston, 1977) of bigram frequency on letter string processing. Finally, the same 

pattern of mixed findings was corroborated in a recent study by Schmalz and Mulatti (2017), who 

asked if bigram frequency statistics impact visual lexical decision. They analysed the data from the 

British Lexicon Project (Keuleers et al., 2012) and the English Lexicon Project (Balota et al., 2007), 
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and found no evidence for bigram frequency effects in the former, and a weak inhibitory effect in 

the latter case (i.e., words with highly frequent bigrams were processed more slowly). 

A similarly complicated picture emerges from research that tested the link between visual 

word processing and the ability to learn regularities. Chetail (2017) ran a study in which participants 

observed a flow of strings composed of unfamiliar fonts, with several bigrams occurring very 

frequently. Following this exposure, participants demonstrated considerable sensitivity to these 

high–frequency bigrams; when they appeared in previously unseen strings, these latter were judged 

as more similar to the familiarization strings. Moreover, participants more easily detected 

unfamiliar fonts that were involved in such bigrams. This demonstrates that when readers are 

exposed to visual materials similar to written words, they code for the frequency of orthographic 

units (e.g., bigrams). Although Chetail’s (2017) experiment involved pseudo–linguistic materials, 

these data are suggestive of the possibility that readers might deploy similar learning mechanisms 

also when processing real letters and words. 

Yet, other studies have failed to find conclusive evidence for this prediction. Schmalz, Altoè 

and Mulatti (2017) noted that if regularity learning is in fact implicated in reading, individuals with 

low reading skills should also exhibit poor statistical learning abilities. Thus, they performed a 

meta-analysis on studies contrasting regularity learning between dyslexic readers and controls. 

Although the analysis did reveal that dyslexia appears to be associated with poorer regularity 

learning, the main conclusion offered by Schmalz et al. (2017) is that current evidence is limited by 

several methodological shortcomings and, overall, insufficient. 

We propose that morphology offers a promising new venue for investigating the role of 

regularity learning in visual word processing. After all, morphemes can be seen as chunks of letters 

that frequently occur together (by virtue of their association with a piece of meaning); from this 

point of view, there is a considerable similarity between written (morphologically-complex) words 

and the visual stimuli used in statistical learning studies (e.g., Fiser & Aslin, 2005). 
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Importantly, the idea that morphology may be rooted into the statistics of language is deeply 

embedded into the connectionist approach to morphology (e.g., Plaut & Gonnerman, 2000) and 

other recent theories of visual word identification (e.g., Baayen, Milin, Durdevic, Hendrix, & 

Marelli, 2011). The core idea is that the visual word identification system does not need to have 

explicit morphological representations in order to produce morphological effects. Neural networks 

that learn to map form onto meaning (and/or orthography to phonology) may display what can be 

interpreted as sensitivity to morphemes based on statistical regularities in this mapping. Moreover, a 

possible link between language statistics and morphological processing has recently been 

considered also in some localist accounts of morphology. For example, the dual-route model of 

Grainger and Ziegler (2011) proposed that the fine-grained route of orthographic processing is 

sensitive to letter co–occurrence statistics. When processing along this route, readers identify 

frequently co–occurring letters and chunk them into higher–level orthographic representations 

(which include morphemes in this model). Although this account does not specify what process is 

responsible for the formation of chunks, it does imply that chunking relies on statistical information 

about the recurrence of orthographic forms. 

Interestingly, the possible link between statistical learning and visual word processing is 

corroborated by several phenomena reported in the morphological processing literature. First, 

numerous studies showed that readers see morphological structure also in words that only have the 

orthographic appearance of being complex (e.g., iron-y or corn-er), but whose meaning has nothing 

to do with the meaning of their pseudo-stems (e.g., irony is not an object that looks to be made of 

iron and corner is not someone who corns; Amenta, Marelli, & Crepaldi, 2015; Longtin, Segui, & 

Hallé, 2003; Rastle, Davis, & New, 2004; for a review, see Amenta & Crepaldi, 2012). These 

findings suggest that visual word processing may partly rely on orthographic representations for 

commonly encountered letter clusters (e.g., readers may have a representation for er because it 

frequently occurs in the lexicon; Rastle & Davis, 2008). 
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Another phenomenon that appears to be closely related to the extraction of statistical 

information is the position-specificity effect. Many morphemes, like derivational affixes, have a 

fixed position within complex words (e.g., prefixes such as pre, re, mis typically occur at the 

beginning, while suffixes such as er, ful, ness appear at the end of words), whereas others, like 

stems, can distribute freely (e.g., the stem view can appear in the initial position as in viewer, in the 

final position as in review, or even in the middle word position as in reviewer). Importantly, there is 

evidence that readers are sensitive to this information. In a visual lexical decision paradigm, 

Crepaldi, Rastle, and Davis (2010) demonstrated that nonwords that had no morphological structure 

(e.g., gasfil) were easier to reject than nonwords composed of a real stem and a real affix (e.g., 

gasful), but only if the affix appeared in its typical position (e.g., filgas and fulgas were equally easy 

to reject). Further, Crepaldi, Rastle, Davis and Lupker (2013) found that manipulating the within-

word position did not have a similar effect on the identification of stems. Thus, affixes, but not 

stems, appear to be processed in a position-specific manner, consistently with the possibility that 

readers might represent the probability of morphemes appearing in a given position within words. 

In sum, there is theoretical and empirical precedence for investigating whether regularity 

learning impacts the morphological processing of written words. However, we are aware of no 

experimental demonstration of this hypothesis. In the morpho–orthography literature and in the 

work on morpheme position specificity, the link between morphological processing and the ability 

to extract statistics can only be inferred post–hoc, as none of the relevant studies directly 

manipulated the statistical properties of the stimuli. Moreover, it remains unclear whether 

morphemes can be identified based on visual-orthographic information alone, since previous studies 

investigating this issue used real linguistic materials, which makes it impossible to rule out the 

involvement of semantics or phonology. 

To address these shortcomings, we developed a hybrid paradigm drawing on statistical 

learning and psycholinguistic research. In two experiments, readers were familiarized with 
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pseudoletter strings (e.g., egndnu, fgikdnu), and we tested whether they formed 

representations for affix-like chunks embedded within those strings (henceforth, affixes; e.g., dnu). 

In the absence of any linguistic content, affix representations could be constructed only using the 

statistical information extracted from the familiarization lexicon - much like affixes in the real 

language, affixes in our study were clusters of frequently co-occurring characters, and appeared in a 

fixed position within the familiarization strings. Thus, evidence for position-specific affix 

representation would corroborate the hypothesis that visual processing of real words is supported by 

the language-agnostic ability to extract regularities from visual materials.  

Experiment 1 

In Experiment 1, participants first completed a familiarization phase where they observed a 

large number of pseudoletter strings. Unbeknownst to participants, strings were composed of a 

random pseudoletter sequence followed by an affix, that is, a cluster of frequently co-occurring 

pseudoletters. Next, in a testing phase, participants saw further, previously unseen strings, and were 

asked to judge whether or not these strings belonged to the familiarization lexicon. Critically, we 

manipulated the presence and position of the affixes within the testing strings: Participants saw (a) 

affix-present strings where affix position was the same as in the familiarization strings, (b) affix-

present strings where affix position was different than in familiarization, and (c) affix-absent strings 

(henceforth, position-congruent, position-incongruent, and affix-absent strings, respectively). We 

hypothesized that, if readers use statistical information to identify affixes within strings, they should 

more often produce a “yes” response (i.e., ascribe a string to the familiarization lexicon) for affix-

present strings, as compared to affix-absent strings; and if such affix identification is position-

specific, we should observe more “yes” responses for position-congruent than for position-

incongruent strings. 

In addition to our main investigation, we considered the possibility that some cognitive or 

perceptual process could interfere with the participants’ ability to discover the affixes. For example, 
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there is evidence for a preferential deployment of attention to materials located in the beginning of 

strings (Aschenbrenner, Balota, Weigand, Scaltritti, & Besner, 2017), a tendency which could 

potentially limit the learning of string-final affixes. Alternatively, learning could benefit from the 

fact that Italian, the native language of our participants, is suffix-dominant (e.g., Dryer, 2013), 

which could encourage the processing of materials located at the end of strings. To determine 

whether our participants demonstrated a preference for either position, we carried out an additional 

affix detection task where we tested if participants’ ability to detect the affixes from the 

familiarization phase varied depending on affix position (i.e., string-initial vs. string-final). 

Methods 

Raw data, analysis scripts, experiment scripts, stimuli, and additional details about the 

project are available at the study’s page at Open Science Framework: https://osf.io/y52q7/ 

Participants. We recruited 70 Italian native speakers, who did not use any other languages 

on a daily basis, had normal or corrected-to-normal vision, no learning disorders, and were 18-35 

years old. All participants gave informed consent prior to the experiment and received 5€. All 

experimental procedures were approved by the Ethics Committee at Scuola Internazionale di Studi 

Superiori Avanzati (International School for Advanced Studies), where participants were tested. 

Apparatus. Participants sat in front of a 27’’ BenQ XL2720 monitor and responded using 

keys J and F on an English QWERTY keyboard. Stimuli were displayed in black, against a light 

gray background (#f0f0f0). The experiment was programmed in OpenSesame (v. 3.1.9; Mathôt, 

Schreij, & Theeuwes, 2012). Participants carried out the experiment individually in a sound-proof 

booth. 

Stimuli and procedure. Participants completed a main task, consisting of a familiarization 

and a testing phase, followed by an additional affix detection task. The testing took place in one 

session, which lasted about 30 minutes. 

Familiarization phase. First, participants were explained they would see words written in 

alien letters and only asked to attentively observe them. At this stage, they were given no further 
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information. They then saw the familiarization strings appearing one by one in the center of the 

screen (800ms ON, 200ms OFF). 

In the familiarization phase, we exposed participants to 200 strings built of pseudoletters 

(BACS-2, sans-serif; Vidal, Content, & Chetail, 2017). Strings were six to eight characters long, 

and were composed of a random sequence of pseudoletters followed by an affix (i.e., a cluster of 

frequently co-occurring pseudoletters). We used 10 unique affixes, half of which were three letters, 

and half four letters long (e.g., dnu; Table 1). Each affix was attached to twenty different random 

sequences (e.g., djydnu, kowdnu, cfydnu, bdesdnu).2 We ensured that affixes did not 

share more than two adjacent characters with any other affix or sequence used in the experiment. 

 

Table 1. Experiments 1-2: A Complete List of the Affixes Used in Our Experiments. 

dnu, cij, dtq, krv, isq, clsw, aeps, admw, cdhs, abhp 

 

Testing phase. In the testing phase, participants saw further, previously unseen strings, and 

were asked to categorize them as either words from the alien language seen in familiarization or 

character combinations that did not belong to the familiarization language. Participants were not 

informed what would be the proportion of words or how many items in total they would see. Each 

trial started with a central fixation cross (500ms), followed by the presentation of a string. After 

participants had responded (or after a 2000 ms time-out), the string was removed from the screen 

and the next trial started. 

 
2Affix statistics in real languages are obviously not so clear–cut, but rather vary across and within 

languages (e.g., some affixes are more productive than others). However, given the small number of 

affixes used in this study and in the interest of experimental control, we opted for a simplified 

distribution. 



12 
MORPHEMES AS LETTER CHUNKS 

 
Participants saw 300 testing strings whose structure differed depending on the condition, 

specifically: (a) 100 position-congruent strings composed of a random pseudoletter sequence and an 

affix appearing in the final position, (b) 100 position-incongruent strings composed of a random 

sequence and an affix in the initial position, and (c) 100 affix-absent strings composed of two 

random sequences (examples in Table 2). The strings were presented intermixed and the order of 

presentation was randomized for each participant. Testing strings were created by concatenating 

new random sequences with the affixes used in familiarization. Each affix appeared attached to ten 

different random sequences in condition (a) and (b), respectively. To accommodate for the unlikely 

possibility that our position manipulation was confounded by systematic differences in the 

sequences used in position-congruent vs. position-incongruent strings, we created two lists of 100 

random sequences whose use across position-congruent and position-incongruent strings was 

counterbalanced between participants (control analyses found no effects related to sequence lists; 

see Supplementary Materials). 

 

Table 2. Experiment 1: Examples of Stimuli Used in the Familiarization (leftmost column) and 

Testing (the three remaining columns) Phase of the Experiment. For Illustration Purposes, Affixes 

are Marked in Bold. 

familiarization position-congruent position-incongruent affix-absent 

egndnu fgikdnu dnudfjn cgtqeir 

 

Affix detection task. Finally, in the affix detection task, participants were shown a screen 

containing the familiarization affixes and asked to spend 3 minutes memorizing them. Next, they 

saw further strings, presented as in the testing phase, and pressed a button to determine whether or 

not a string contained one of the affixes (participants were told that an affix might appear in any 

part of the string). Participants saw 120 strings: (a) 40 strings composed of a random sequence and 
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an affix in the string-final position, (b) 40 strings composed of a random sequence and an affix in 

the string-initial position, and (c) 40 strings composed of two random sequences. 

Statistical analysis. Data from the testing phase were modeled using a Generalized Linear 

Mixed Model (GLMM) involving a fixed effect for String Type (affix-absent vs. position-congruent 

vs. position-incongruent), by-participant random intercepts and slopes, and by-item random 

intercepts. Given the binary nature of the dependent variable, the model was a logistic regression 

(see Supplement for model syntax). The reference level for String Type was initially set to affix-

absent, so as to examine the comparison between affix-absent and position-congruent strings, and 

between affix-absent and position-incongruent strings. This allowed us to investigate the effect of 

the mere presence of an affix. Next, the reference level for String Type was changed to position-

congruent, so as to assess the comparison between position-congruent and position-incongruent 

strings and thus to investigate the effect of affix position. We applied effect-coded contrasts in all 

GLMMs reported in this paper. Models were computed in R (version 3.4.2; R Core Team, 2017), 

using the lme4 package (version 1.1-14; Bates, Maechler, Bolker, & Walker, 2019). See 

Supplement for further models confirming the solidity of our effects. 

Data from the affix detection task were analysed using d-prime, which was computed with 

the standard formula d’ = z(H) - z(FA) where H is the hit rate (i.e., the number of correct affix 

detections divided by the number of trials where an affix was present), and FA is the false alarm 

rate (i.e., the number of incorrect affix detections divided by the number of trials where an affix was 

not present). We calculated d-prime separately for each participant in each condition (string-initial 

vs. string-final), thus assessing the rate of successful affix detection as depending on within-word 

position. This approach left us with two paired data points per participant, making it unnecessary to 

use sophisticated mixed-effect modelling; d-primes for string-initial and string-final position were 

thus compared with a paired-sample t-test. 

Results 
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Prior to data analysis, we excluded 1 participant who judged 99% of the testing strings as 

belonging to the familiarization lexicon (leaving n = 69; the histograms used to identify outliers can 

be found in Figure S1 in the Supplement).  

Data from the testing phase are illustrated in Figure 1 (means in Table S1). The analysis 

revealed that both types of affix-present strings were associated with greater odds of making a “yes” 

response, as compared to affix-absent strings (position-congruent strings: 𝛽መ = .274, z = 4.47, p < 

.001; position-incongruent strings: 𝛽መ  = .176, z = 2.86, p = .004; the overall effect of String Type 

was also significant: χ2 (2) = 20.02, p < .001). Thus, participants were more prone to ascribe a string 

to the familiarization lexicon if it contained an affix. However, the comparison of position-

congruent and position-incongruent strings was only marginally significant (𝛽መ  = -.097, z = -1.90, p 

= .057). Model estimates for the proportion of “yes” responses were as follows: .51 (95% CI: .48 to 

.55) for affix-absent strings, .58 (95% CI: .55 to .61) for position-congruent strings, and .56 (95% 

CI: .53 to .59) for position-incongruent strings. 

Additionally, the analysis of the affix detection task showed a clear advantage for the string-

initial position—participants’ ability to detect affixes was higher when they appeared at the 

beginning of a string, rather than at the end (t(62) = 3.07, p = .003, Cohen’s d = 0.39; means in 

Table 3; prior to this analysis, we excluded further 5 participants who produced less than 33% 

responses in any design cell, and 1 participant who had an outlier d-prime value -0.75, thus leaving 

63 participants). 
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Figure 1. Experiments 1-2: Boxplots presenting the proportion of strings judged as belonging to the 

familiarization lexicon, by affix-absent, position-congruent, and position-incongruent testing 

strings. 

 

Table 3. Experiments 1-2: Mean Affix Detection (d-prime), by String-Initial and String-Final Affix 

Position. Means Reported with 95% Confidence Intervals.  

 string-initial string-final 

Experiment 1 1.01 [±.12] 0.88 [±.13] 

Experiment 2 1.05 [±.12] 0.80 [±.15] 

 

Discussion 

Experiment 1 suggested that readers may identify morphemes based solely on probabilistic 

information: After being familiarized with strings containing recurring affixes, participants became 

sensitive to the presence of these affixes in previously unseen strings (i.e., they more often judged 

such strings as belonging to the familiarization lexicon if they contained an affix). Importantly, 

despite being in other ways similar to real words, our stimuli were built of pseudoletters, and so 

were devoid of any semantic, syntactic or phonological content. Thus, participants must have learnt 
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to distinguish the affixes based on the statistical properties of their constituent characters (see Rastle 

& Davis, 2008). 

We also found some evidence that such probability-based identification of morphemes is 

sensitive to the position of morphemes within strings: Position-congruent strings, which comprised 

an affix appearing in the same position as during familiarization, were ascribed to the 

familiarization lexicon slightly more often than position-incongruent strings. However, the 

associated statistical effect was small and only marginally significant, raising the possibility that 

this finding may constitute a null effect. Alternatively, an external cognitive or perceptual process 

could have interfered with the ability to encode the information related to affix position, thus 

resulting in a diminished statistical effect.  

Interestingly, data from the affix detection task supported this latter interpretation: We 

observed that participants were better able to detect the affixes when they appeared in string-initial 

vs. string-final position, suggesting a processing advantage for string-initial affixes. Thus, our 

results speak to the possibility that participants might indeed learn about both presence and position 

of affixes, but a preference for string-initial materials can at times (e.g., when affixes are located at 

the end of strings) interfere with coding for affix position.3 To validate this interpretation, and to 

assess the robustness of our overall findings, we conducted Experiment 2. 

 
3Another possibility was that the string-initial bias affected how participants processed the testing 

strings - string-initial affixes might have been more visible within those strings. However, it is 

unlikely that such bias could influence responses in the testing phase given the long response 

window (2000ms). In any case, this account would preserve the idea that participants identified the 

affixes in a position-specific manner; the effect would just emerge less strongly in the data because 

of a concomitant bias that acted in the opposite direction with respect to our experimental 

manipulation. 
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Experiment 2 

Experiment 2 was a replication of Experiment 1, except that now affixes appeared in the 

beginning (rather than at the end) of the familiarization strings. Once again, we investigated 

whether participants would become sensitive to the presence and position of affixes following 

familiarization. We expected to replicate the effect of affix presence. But importantly, if we 

correctly reasoned that a preference for string-initial materials limited participants’ ability to code 

for positional information in Experiment 1, in Experiment 2 we should observe a statistically 

significant effect of affix position, since a string-initial bias would no longer interfere with affix 

learning during familiarization. 

Methods 

Raw data, analysis scripts, experimental scripts and stimuli are available at Open Science 

Framework: https://osf.io/y52q7/ 

Participants. We recruited further 71 participants from the same population as in 

Experiment 1. Monetary compensation, informed consent, and ethical approval were arranged as 

per Experiment 1. 

Stimuli, procedure and statistical analysis. The stimuli were identical as in Experiment 1, 

with the exception that affixes were now positioned at the beginning of the familiarization strings 

(i.e., we transformed the affix-present strings used in Experiment 1 by moving the affixes to the 

front of the strings; affix-absent strings remained the same); all other features of the stimuli 

remained unchanged. We used the same apparatus and replicated the procedure of Experiment 1. 

The data were also modeled exactly as in Experiment 1. 

Results 

Before analyzing the data, we excluded 2 participants who judged the majority of the testing 

strings (86% and 98%) as belonging to the familiarization lexicon (leaving n = 69; see Figure S1 for 

a histogram used to identify outliers).  
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The analysis of the testing phase revealed a very similar pattern of results relative to 

Experiment 1 (see Figure 1; Table S1). Just as in Experiment 1, the overall effect of String Type 

was statistically significant (χ2 (2) = 18.99, p < .001), and the odds of making a “yes” response were 

greater for position-congruent than for affix-absent strings (𝛽መ = .516, z = 4.31, p < .001). However, 

the difference between position-incongruent and affix-absent strings did not reach the conventional 

significance threshold (𝛽መ  = .101, z = 1.42, p = .155). Participants were therefore prone to make a 

“yes” response when an affix was present, but this time only if the affix was located in the same 

position as in the familiarization phase. This finding was further confirmed by the comparison 

between position-congruent and position-incongruent strings, which was now statistically 

significant (𝛽መ  = -.415, z = -3.87, p < .001), as predicted. Model estimates for the proportion of “yes” 

responses were as follows: .50 (95% CI: .45 to .54) for affix-absent strings, .62 (95% CI: .59 to .66) 

for position-congruent strings, and .52 (95% CI: .49 to .55) for position-incongruent strings; 

additional analyses showed that these results remain stable under different outlier exclusion criteria 

(see Supplement). 

We also assessed the robustness of our finding that affixes are more easily detected if they 

appear in the string-initial position. This test was important because a pattern of results consistent 

with Experiment 1 would suggest that such string-initial bias is most likely due to some process 

external to our task (rather than being a product of the exposure to the familiarization lexicon, for 

example). Indeed, we once again found that affix detectability was higher for affixes in the string-

initial rather than string-final position (t(67) = 3.94, p < .001, Cohen’s d = 0.48; means in Table S3; 

prior to this analysis, we excluded 1 further participant who had an outlier d-prime value 2.66, 

leaving 68 participants). 

Discussion 

Experiment 2 confirmed the core finding of Experiment 1: Following familiarization, 

participants were sensitive to the presence of affixes within strings. However, this was only true for 
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position-congruent strings in this experiment. Affix-present, but position-incongruent strings were 

ascribed to the familiarization lexicon similarly often as affix-absent strings, and significantly less 

often than position-congruent strings. Thus, unlike in Experiment 1, participants in Experiment 2 

were clearly sensitive to whether affixes appeared in the same position as in familiarization 

(additional analyses confirmed that the effect of affix position was indeed greater in Experiment 2; 

see Supplement). 

The difference between the results of Experiment 1 and Experiment 2 with respect to the 

position coding effect is naturally explained by the bias uncovered in the affix detection task: 

Participants appeared to process affixes more easily when they appeared string-initial. The fact that 

affixes were located at the end of the familiarization strings in Experiment 1 might have interfered 

with participants’ ability to process the affixes, thus constraining learning. But because in 

Experiment 2 familiarization affixes were presented string-initial, the encoding of the positional 

information was not disturbed, allowing participants to later use this information in the testing 

phase. Also note that the results that emerged in the detection task across experiments imply that the 

string-initial bias is not a product of the exposure to the statistical properties of the familiarization 

lexicon, but likely comes from perceptual or cognitive mechanisms independent of the task. 

Overall, these data point to an important role for position in affix coding, similarly to what Crepaldi 

et al. (2010) found for real affixes. 

General Discussion 

 Evidence in the visual word identification literature suggests that the ability to extract 

statistical regularities in letter co-occurrence may play an important role in the learning and 

processing of morphemes (e.g., Kazanina, 2011; Marelli, Amenta, Morone, & Crepaldi, 2013; 

Rastle & Davis, 2003; Rastle et al., 2004). We tested this hypothesis by investigating if readers use 

statistical information to discover affix-like chunks embedded in pseudoletter strings. Critically, 

since they were devoid of any phonemic or semantic information, our chunks resembled real 
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morphemes only in the sense that they were clusters of characters occurring together across multiple 

different strings. We demonstrated that a brief familiarization with strings containing these chunks 

was sufficient for participants to: (i) develop sensitivity to affix-like chunks; and (ii) code for their 

position within strings.  

These results mirror two important phenomena observed in the processing of real linguistic 

materials. First, similarly to how our participants were sensitive to chunks within pseudoletter 

strings, readers are known to be sensitive to the presence of morphemes and morpheme-like clusters 

in strings of familiar letters. For example, readers reject nonwords more slowly when they contain 

morphemes (e.g., applement; Crepaldi, et al., 2010; Caramazza, Laudanna, & Romani, 1988; Taft & 

Forster, 1975; see also Amenta & Crepaldi, 2012; Feldman, Kostić, Gvozdenović, O’Connor, & del 

Prado Martín, 2012; Hasenäcker, Solaja, & Crepaldi, 2020; Rastle & Davis, 2008). Although 

particular interpretations of this phenomenon may vary, overall studies have demonstrated that 

morphologically-structured nonwords appear more word–like to the readers. Similarly, in our study, 

strings comprising an affix-like chunk were more likely judged as part of the familiarization 

lexicon. 

Second, we saw that the processing of chunks varied depending on whether they appeared in 

their typical position, a finding that closely resembles the position-specificity effect observed in the 

identification of real affixes within nonwords. Crepaldi et al. (2010) found that nonwords 

comprising a real suffix (e.g., gasful) were rejected in lexical decision more slowly than non–

suffixed controls (e.g., gasfil), but only when the suffix was in its typical position (fulgas was as 

easy to reject as filgas). Similarly, our participants tended to consider novel strings as belonging to 

the familiarization lexicon particularly when the affix–like chunks appeared in their typical 

position. 

Hence, our study suggests that some of the mechanisms involved in morphological 

processing can operate based only on visual-orthographic information, in isolation from other 
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linguistic levels (e.g., semantics or phonology). By constructing the stimuli of unfamiliar 

pseudoletters, we ensured that semantics, phonology and syntax were not available, and so the 

cognitive processes that allowed readers to become sensitive to the presence and position of the 

affix-like chunks must have been based exclusively on visual information.  

This resonates with the morpho-orthographic accounts of visual word processing (e.g., 

Crepaldi, Rastle, Coltheart & Nickels, 2010; Rastle & Davis, 2008). In this view, at the early stages 

of processing, readers perform a rapid analysis of the orthographic structure of words, which leads 

them to discover genuine morphemes in the case of morphologically complex words (i.e., the stem 

deal and the affix er in the word dealer); but also pseudo-morphemes in the case of simple words 

with the mere appearance of morphological complexity (i.e., the pseudo-stem corn and the pseudo-

affix er in the word corner). The morpho-orthographic account emphasizes the nature of 

morphemes as clusters of letters that co-occur frequently; for instance, it highlights that semantics is 

not indispensable for the identification of potential morphemes. However, it does not consider 

morphemes as entirely equivalent to letter clusters, of course. For instance, it does not preclude that 

semantic information also plays a role in written word processing (e.g., Amenta et al., 2015; 

Feldman et al., 2012; Marelli et al., 2015). 

More generally, morphemes are certainly important in language because they connect to 

meaning. Frequent clusters of letters may also be psychologically relevant because they represent 

phonemes, syllables, or other linguistically relevant information. This network of connections with 

the linguistic system was entirely absent in the experiments presented here. It is important to stress 

that this does not imply that we deny the importance of this network. Of course, morphemes in the 

real language are more than mere letter chunks, and surely there are several aspects in their 

processing that depend crucially on their connections with meaning or phonology. Thus, our study 

should be taken as an important early step showing that, despite some aspects of morphological 

processing surely depend on the widespread connections present throughout the language 
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processing system, some other morphological phenomena may be described as primarily 

orthographic, to the point that they emerge even in artificial systems where semantics, phonology 

and syntax are not implemented. 

Beyond highlighting the importance of orthographic information, our data suggest that 

morphological processing is affected by the statistical regularities that characterize the reading 

materials. This is consistent with much previous work. The idea that morphological processing is 

statistical in nature can be traced back to Seidenberg (1987) who suggested that morphological 

units, or sub–lexical units more generally, emerge based on orthographic regularities. Although this 

early account did not specify what type of regularities may be taken up by the system (e.g., 

occurrence frequency, transitional probability), it stressed that sub–lexical units are based on the 

distribution of letter patterns in the lexicon (see also Seidenberg & McClelland, 1989).  

A similar approach has been taken by numerous other scholars. Rueckl et al. (1997) 

constructed a connectionist network which involved orthographic and semantic nodes (reflecting 

the connections between orthography and semantics in the real language), but which was devoid of 

any explicit representations for morphological units or ties. The model was successfully able to 

recreate the morphological priming effect (e.g., Stanners, Neiser, Hernon, & Hall, 1979), suggesting 

that this effect must therefore be captured by the statistical associations between orthography and 

semantics (see also Plaut & Gonnerman, 2000).  

Baayen et al. (2011) proposed a model including a layer of form representations (i.e., letters 

and bigrams) and a layer of semantic representations (i.e., meanings). The model associates form 

and semantic representations through discriminative learning (e.g., Wagner & Rescorla, 1972): 

When letters and bigrams co–occur with a given meaning (e.g., h and ha with the meaning HAND), 

their association is strengthened, proportionally to how many other letters and bigrams are also 

present in the input. Conversely, letter-to-meaning associations are weakened when letters and 

bigrams are present, but a piece of meaning is not (e.g., h and ha appearing in the word hat, which 

has nothing to do with the meaning HAND). Importantly, and just as in Rueckl et al.'s (1997) 
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network, no representations for morphemes or morphological ties were built into this model, and yet 

it was able to account for several morphological effects (e.g., family size effect; Schreuder & 

Baayen, 1997). This again suggests that the processing of written words makes use of the 

regularities in how different levels of linguistic information map onto one another. 

The learning of these mappings has also been addressed experimentally in several studies 

using artificial stimuli, either novel words made up of existing letters attached to meaning (e.g., 

Merkx, Rastle, & Davis, 2011; Rueckl & Olds, 1993; Tamminen, Davis, & Rastle, 2015) or strings 

of pseudofonts attached to phonology (e.g., Taylor, Davis, & Rastle, 2017; Taylor, Rastle, & Davis, 

2019). These experiments exploited the statistical regularity in the stimuli (e.g., consistency in the 

link between morphemes and meaning); in this sense, we walk on a pathway they set, and build on 

the same approach of using artificial, pseudo–linguistic materials to offer suggestions about the 

processing of the real language. 

The findings from the present study are convergent with these accounts, insofar that they 

suggest that morphological processing is, at least in part, guided by the rich statistical information 

encoded in language. But our study presents an important element of novelty that we would like to 

emphasise. Previous research focused primarily on the regularity in the mapping between different 

linguistic levels of representation - for example, orthography to phonology, or orthography and 

phonology to semantics. In the present study, however, there is no other linguistic information to 

map orthography to; the focus is all on the visual input, whose statistical regularity is taken up even 

in the absence of any phonology or semantics to associate this visual input with. From this 

perspective, it is all the more impressive that in our experiments “letters” were in fact unknown, 

non–linguistic symbols, and “words” and “affixes” were nothing more than sequences of these 

symbols. This shows the power of statistical regularities - they might affect word processing even 

when the usual connections between different levels of linguistic information are ruled out. 
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Where does the sensitivity to regularities in character distribution come from? The results 

described here suggest that linguistic, and specifically orthographic regularities may be acquired 

through a statistical learning mechanism. Readers in our study passively observed a stream of 

familiarization strings and learnt which characters may be clustered into affix-like chunks. Because 

stimuli were constructed of unfamiliar pseudoletters and there was no explicit information about the 

structure of the strings, readers must have relied on their ability to extract regularities directly from 

the visual input. This closely resembles the numerous visual statistical learning studies showing that 

observers compute co-occurrence probabilities for visual objects, and use these probabilities to 

create higher-level visual representations. For example, the experiments of Fiser and Aslin (2005), 

which we mentioned in the Introduction, demonstrated that observers utilize shape co-occurrence 

statistics to construct representations for complex shape sequences (e.g., shape quadruples). 

By using a paradigm that bridges the visual word identification and the statistical learning 

literature (i.e., familiarization to visual statistics followed by lexical decision), we highlight the 

similarities between the processing of the ordered collection of visual objects that are typically 

investigated in the visual statistical learning experiments, and the ordered collection of 

pseudoletters that make up the strings investigated here. At a certain level of description, both types 

of stimuli are higher–level configurations of lower–level visual objects, in a hierarchy of 

complexity that builds on statistical regularities (e.g., co-occurrence statistics). Thus, our evidence 

is suggestive of the possibility that the ability to extract visual regularities may contribute to the 

processing of both non-linguistic and linguistic printed stimuli. In the visual word identification 

system, this statistical learning mechanism might serve the purpose of identifying cohesive chunks 

of letters that may become candidates for higher-order representations, which may then remain 

primarily orthographic (e.g., n-grams; Grainger & van Heuven, 2003; Whitney, 2001; morpho–

orthographic chunks; Longtin et al., 2003; Rastle et al., 2004) or acquire a genuine morphological 

or lexical status if they become associated with specific meanings (e.g., lemmas; Crepaldi et al., 

2010; Taft & Nguyen–Hoan, 2010). 
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A recent study by Chetail (2017) provided important early evidence for a link between 

statistical learning and visual word processing. Exposed to strings of pseudoletters similar to ours, 

Chetail’s participants developed sensitivity to frequent bigrams and the single characters embedded 

in those bigrams. Our work complements these findings by extending the range of situations where 

statistical learning applies to the processing of strings: The clusters used in our study were longer 

than those used in Chetail (2017) (i.e., we used chunks that were 3- and 4-character long, whereas 

Chetail focused on bigrams), and featured a considerably more subtle statistical distribution (i.e., 

each chunk appeared in 10% of the lexicon in our work, compared to 50% in Chetail). Further, our 

chunks, much like real prefixes and suffixes, appeared in a fixed position within strings. These 

methodological differences bring us closer to recreating natural morphological processing. 

However, the core learning mechanism in both studies seems rather similar: Characters that 

frequently occur together get associated, thus potentially providing larger, higher-level functional 

units. In the experiments described here and in Chetail (2017), these units cannot be but purely 

visual/orthographic, which, as we have discussed above, may link to similar levels of 

representations in the visual word identification system (letter n-grams, morpho-orthographic 

chunks). 

Further evidence supporting the proposition that visual word processing may be affected by 

a regularity learning mechanism comes from the Artificial Grammar Learning (AGL) literature (for 

reviews, see Christiansen, 2019; Frost et al., 2020; Perruchet & Pacton, 2006; Pothos, 2007; Reber, 

1989). This body of research (historically operating largely in parallel to statistical learning 

research) demonstrated that observers learn the compositional regularities that characterize element 

sequences. For instance, in the seminal study of Reber (1967), participants who memorized strings 

generated from an artificial finite-state grammar were later able to distinguish between novel strings 

generated with the same grammar and random strings. This paradigm is of course similar to our 

paradigm where learners first observe familiarization strings and then judge whether or not 

previously unseen strings come from the same learning lexicon. 
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Interestingly, there is considerable agreement that the learning observed in AGL studies 

involves chunk learning to some extent (e.g., Christiansen, 2019; Perruchet & Pacton, 2006). Since 

the nature of grammatical systems is that they favour some element transitions more than others, 

grammatically-regular strings necessarily contain recurring chunks of elements (e.g., in a grammar 

where transitions R-F and F-V are highly likely, the chunk RFV is present in grammatical strings 

SVDRFV, SVRFVDX, FVDRFVDX; example from Perruchet & Pacton, 2006). Thus, an efficient 

way of distinguishing between grammatical and ungrammatical strings could be to rely on the 

frequent chunks present within a string. Regardless of whether such chunking occurs in parallel to, 

as a consequence of, or instead of rule learning, AGL research converges with our study in the 

sense that it clearly points to the importance of regularity learning for the processing of letter 

strings, and possibly also real words (for a discussion, see Christiansen & Chater, 2016; Isbilen, 

McCauley, Kidd, & Christiansen, 2017; Thiessen et al., 2013). 

Although we did not set out to test any specific statistical learning account, our data can be 

nevertheless referred to some of the frameworks aiming to identify the mechanisms underlying 

regularity learning (for reviews, see Frank et al., 2010; Giroux & Rey, 2009; Thiessen & Erikson, 

2013; Thiessen et al., 2013). For example, our finding that readers showed sensitivity to the 

presence of affixes could be interpreted through the lense of the PARSER model (Perruchet & 

Vinter, 1998; 2002; Perruchet & Pacton, 2006). According to this model, learning materials are 

initially processed as a collection of primitives, but through association these primitives gradually 

become integrated into representations of higher-level units. In this view, readers in our study 

would initially process an affix as a collection of individual pseudoletters, but later, with repeated 

exposure, they would integrate them into a coherent representation for that specific affix. Such 

representations could then be utilized to inform the string judgments in the testing phase. A similar 

interpretation would be suggested by the Bayesian Chunking Learner model (BCL; Orbán et al., 

2008; Fiser, Orbán, Lengyel, & Aslin, 2009), according to which observers exploit the statistical 
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contingencies between individual visual objects to form representations for reappearing object 

chunks. Under the assumption that the familiarization strings in our study were processed as visual 

materials, the BCL would also expect our readers to construct distinct representations for the 

affixes.  

Note, however, that neither of these models would explicitly predict our readers’ sensitivity 

to the chunk positional properties, particularly if the familiarization strings comprised chunks in the 

string-initial position. Specifically, we observed that the extent to which readers became sensitive to 

chunks’ position differed depending on whether chunks were presented in the beginning or the end 

of familiarization strings (i.e., the associated effect was considerably stronger in the experiment 

where chunks appeared in the string-initial position, as compared to the experiment where they 

appeared in the string-final position). This was explained by the results in the affix detection task, 

which revealed a processing advantage for string-initial material, independently on where affixes 

appeared in the familiarization lexicon. Curiously, a similar finding has been observed in the 

processing of real words and, more generally, letter strings. Several studies showed that letters 

appearing in the string-initial position are processed more efficiently than those in other positions 

(e.g., Hammond & Green, 1982; Mason, 1982; Scaltitti & Balota, 2013; Tydgat & Grainger, 2009). 

It has been suggested that this initial-position advantage is, at least partly, due to a rapid deployment 

of spatial attention to the beginning of letter strings (Aschenbrenner et al., 2017; cf. Scaltritti, Dufau 

& Grainger, 2018), a mechanism which could help readers process the beginning of words, in turn 

easing lexical access and identification (e.g., Clark & O’Regan, 1999; Cutler, Hawkins & Gilligan, 

1985; Stevens & Grainger, 2003). Interestingly, therefore, the totality of our data points to a 

possibility that the ability to extract and represent statistical information in written language might 

be modulated by other cognitive processes, including attentional biases (see also Aslin & Newport, 

2012; Arciuli, 2017; Thiessen et al., 2013). 

The use of statistical learning in morphological processing could also be limited by other 

factors. For one, real languages are characterized by far more variability than the artificial stimuli 
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typically used in laboratory experiments, and it is possible that the learning would change under 

more naturalistic statistical parameters. In the study described here, readers saw 10 pseudo-affixes, 

each occurring in 20 different strings. What would happen if these numbers would mirror real 

morphology (e.g., English language distinguishes over 50 suffixes; Déjean, 1998)? Intuitively, 

using a greater number of pseudo-affix chunks could lead to worse learning, because the statistics 

would become considerably more subtle, potentially making it more difficult to associate characters 

into chunks. On the other hand, such difficulty could be mitigated by allowing more time for 

learning - after all, outside of psychological labs, readers spend a considerable time mastering a 

language. And of course, as we have already discussed, regularities are not confined to a single (e.g, 

orthographic) level, but can exist on multiple levels of linguistic information, and in the mappings 

between these levels (e.g., er might be a derivational suffix signifying agency as in painter, it may 

be a comparative form of adjectives as in bigger, or simply be an embedded letter cluster as in 

corner). It is currently unknown to what extent the processing of written words is affected by the 

learning of purely visual-orthographic regularities when the rich network of linguistic information is 

available to the reader (e.g., when orthographic regularities exist in parallel to phonological or 

semantic information). To investigate this, one could envisage a set of experiments where different 

levels of linguistic information are gradually introduced into a carefully-controlled set of artificial 

visual stimuli. Such a research program would help to more closely recreate natural language 

processing, and to probe the possible interactions between orthographic, semantic, and phonological 

regularities. There is certainly much material for future research here. 

Finally, we turn to discussing the implications of our data for accounts of reading 

acquisition, particularly with regard to how learners become sensitive to the morphological 

structure of written words. The discovery of morphological regularities is considered an important 

step in the course of reading acquisition (Castles, Rastle & Nation, 2018). This is because it 

contributes to stronger links between orthography, phonology and meaning, and enables a more 
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efficient recognition of words that is achieved through the process of chunking in which 

morphologically complex words are processed as familiar chunks (e.g., interesting can be read as 

two morphemes or chunks: interest and ing; Ehri, 2005; Nagy, Carlisle & Goodwin, 2014). It is 

believed that experiences with word and sentence processing help developing readers to learn the 

semantic, grammatical, and syntactic information that is conveyed by the morphology of the 

language to which they are exposed (e.g., Goodwin, Petscher, Carlisle & Mitchell, 2015; Nagy et 

al., 2014). However, while it is agreed that morphological learning occurs implicitly from the 

statistical properties of a given language (Goodwin et al., 2015), the precise mechanisms that 

underpin this knowledge acquisition are underspecified.  

In our study, participants faced a task similar to that of developing readers - they were 

presented with an unfamiliar alphabet and lexicon, and their cognitive system was challenged to 

make sense of this new information. From this perspective, our evidence points to a possibility that 

morphological structure might be learnt also based on a bottom-up chunking mechanism, which can 

operate independently of explicit learning and other top-down processes (e.g., morpheme 

recognition driven by syntactic and semantic knowledge; Nagy et al., 2014). As we suggested 

above, such a bottom–up mechanism could serve the purpose of individuating statistically cohesive 

chunks as candidates for association with other linguistic levels (semantics, as in the case of 

morphemes, or phonology, as in the case of multi–letter graphemes, such as sch or th). In turn, 

acquiring such a morphological scaffolding for language could aid learners in constructing print-to-

meaning mappings (see Yablonski, Rastle, Taylor & Ben Shachar, 2019).  

Some evidence for a connection between statistical learning and learning to read comes 

from studies reporting a positive correlation between the two abilities among English (Arciuli & 

Simpson, 2012) and Norwegian developing readers (von Koss Torkildsen, Arciuli, & Wie, 2019). 

However, these data did not remain unchallenged. West et al. (2018) investigated the issue in a 

large cohort of English children, and reported a lack of correlation between performance in a Serial 
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Recall Task, which is often taken as a metric of implicit statistical learning, and word and nonword 

reading. Some inconsistency in this literature might be related to poor (inter-)reliability in some of 

the classic tests used to assess statistical learning, as reported in the same study by West et al. 

(2018) and in others (e.g., Schmalz, Moll, Mulatti, & Schulte-Körne, 2019; Siegelman, Bogaerts, & 

Frost, 2017). Clearly, in order to fully understand the role of statistical learning in reading 

acquisition a more systematic investigation is warranted. Given its importance in the process of 

reading development, future work should seek to provide direct links between the acquisition of 

morphological knowledge and statistical learning in children learning how to read. Further, it would 

be important to investigate whether artificial languages are approached by adults and developing 

readers in a similar manner. Whether the learning mechanisms of adult skilled readers are 

comparable to those of developing readers remains to be seen. 

In sum, our evidence implies that the extraction of statistical regularities may play an 

important role in the processing of written language, particularly in the morphological domain. 

Previous studies on the visual identification of complex words have suggested that this process may 

be based, at least in part, on general visual mechanisms building on letter co-occurrence probability. 

The use of an artificial script in the present study enabled us to obtain important preliminary 

evidence suggesting that several phenomena previously limited to the visual processing of real 

linguistic materials can in fact occur without the contribution of semantic, phonological or syntactic 

information. This highlights a possible continuity between visual word identification and non–

linguistic visual learning, both ontogenetically (Dehaene & Cohen, 2007) and phylogenetically 

(Grainger, Dufau, Montant, Ziegler & Fagot, 2012). 
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