Interdisciplinary Advances in Statistical Learning 2019 - San Sebastian, Spain June 27-29 N-GRAM CODING AS A GENERAL-PURPOSE VISUAL LEARNING TOOL

Eva Viviani - Yamil Vidal - Davide Zoccolan - Davide Crepaldi International School for Advanced Studies (SISSA), Trieste, Italy

INTRODUCTION

- It has been suggested that the visual word identification system identifies recurrent letter clusters (n–grams) as a bridge between letters and words [1][2].
- We investigated how general this n-gram mechanism might be by asking participants to learn novel objects made up of smaller parts, similarly to how novel words are made up of letters (see Vidal's talk).
- We pushed the boundary of n-gram coding by testing it in unarticulated visual objects (Gabor patches) where n-grams are not based on spatially segregated, smaller parts, but on feature co-occurrence (e.g., orientation, density and contrast).

AIMS

- Finding out whether visual bigram coding reflects a general purpose sensitivity
 of the brain to feature co-occurrences irrespective of whether these are made
 of letters.
- Testing the limits of bigram sensitivity, we investigate how visual recognition operates on the learning of high (shapes) and low (orientation, contrast and spatial frequency) level features.

WHAT DID WE LEARN?

- Similar to what happens with (pseudo)reading material, participants have a hard time discarding objects that comply with the statistical pattern of the smaller parts.
- This happens regardless of whether the visual stimuli are novel words, novel objects or gabor patches.
- This is in line with a general-purpose brain mechanism that is based on feature co-occurrence statistics.

his project has received funding from the European Researc ouncil (ERC) under the European Union's Horizon 2020 search and innovation programme Grant Agreement No 9010 - STATLEARN - ERC-2015-STGG/ERC-2015-STG. stablished by the European Commission

erc

REFERENCES

[1] Dehaene, S., Cohen, L., Sigman, M., and Vinckier, F. (2005). The neural code for written words: A proposal. Trends in Cognitive Sciences, 9(7):335-341.

[2] Grainger, J. and Whitney, C. (2004). Does the huamn mnid raed wrods as a wlohe? Trends in Cognitive Sciences, 8(2):58-59.

Disclaimer: These results reflect only the author's view. The European Research Council Executive Agency (ERCEA) is not responsible for any use that may be made of the information contained.